Devoir Maison 3

Pour le 3 novembre 2025

Exercice 1

(D'après Ecricome 2020)

Soit $(u_n)_{n\geqslant 0}$ une suite de réels. Si la série numérique de terme général u_n converge, on dit qu'elle converge à l'ordre 1 et on note alors $(R_{1,n})_{n\geqslant 0}$ la suite de restes de cette série, autrement dit

$$\forall n \in \mathbb{N}, \qquad R_{1,n} = \sum_{k=n+1}^{+\infty} u_k$$

Si à nouveau la série de terme général $R_{1,n}$ converge, on dit que la série $\sum_{n\geqslant 0}u_n$ converge à l'ordre 2 et on note $R_{2,n}$ la suite de reste de cette série, autrement dit

$$\forall n \in \mathbb{N}, \qquad R_{2,n} = \sum_{k=n+1}^{+\infty} R_{1,k}$$

Plus généralement, pour tout entier $p \geqslant 2$, si la série de terme général $R_{p-1,n}$ converge, on dit que la série $\sum_{n\geqslant 0} u_n$ converge à l'ordre p et on note alors $(R_{p,n})_{n\in\mathbb{N}}$ la suite de restes de cette série :

$$R_{p,n} = \sum_{k=n+1}^{+\infty} R_{p-1,k}$$

On peut noter : pour tout $n \in \mathbb{N}$, $R_{0,n} = u_n$ Le but de cet exercice est d'étudier, sur certains exemples, l'ordre de la convergence de la série de terme général u_n .

- 1. Soit $\alpha \in \mathbb{R}$. On considère, dans cette question seulement, que, pour tout $n \in \mathbb{N}^*$, $u_n = \frac{1}{n^{\alpha}}$
 - (a) Rappeler la condition nécessaire et suffisante sous laquelle $\sum_{n\geqslant 1}u_n$ converge.

On se place désormais sous cette condition.

(b) Pour tout entier $k \ge 2$, justifier que

$$\int_{k}^{k+1} \frac{1}{t^{\alpha}} \, \mathrm{d}t \leqslant \frac{1}{k^{\alpha}} \leqslant \int_{k-1}^{k} \frac{1}{t^{\alpha}} \, \mathrm{d}t$$

(c) En déduire que, pour tout $n \ge 1$

$$\frac{1}{\alpha - 1} \frac{1}{(n+1)^{\alpha - 1}} \leqslant R_{1,n} \leqslant \frac{1}{\alpha - 1} \frac{1}{n^{\alpha - 1}}$$

(d) En déduire que

$$R_{1,n} \underset{n \to +\infty}{\sim} \frac{1}{(\alpha - 1)n^{\alpha - 1}}$$

- (e) Sous quelle condition nécessaire et suffisante sur α la série $\sum_{n\geqslant 1}u_n$ converge-t-elle à l'ordre 2?
- (f) Conjecturer à quel ordre la série $\sum_{n\geq 1} u_n$ converge.
- 2. On considère, dans cette question seulement, que, pour tout $n \in \mathbb{N}^*$, $u_n = \frac{1}{n^n}$
 - (a) Montrer que la série $\sum_{n\geqslant 1}u_n$ converge.

1

(b) Montrer que, pour tout $k\geqslant 3,\ u_k\leqslant \frac{1}{3^k},$ puis en déduire que, pour tout $n\geqslant 2$

$$0 \leqslant R_{1,n} \leqslant \frac{1}{2 \cdot 3^n}$$

(c) En déduire que la série $\sum_{n\geqslant 1}u_n$ converge à l'ordre 2 et que, pour tout $n\geqslant 1$

$$0 \leqslant R_{2,n} \leqslant \frac{1}{4.3^n}$$

(d) Montrer que, pour tout $p\geqslant 2$, la série $\sum_{n\geqslant 1}u_n$ converge à l'ordre p et que, pour tout $n\geqslant 1$

$$0 \leqslant R_{p,n} \leqslant \frac{1}{2^p \cdot 3^n}$$

- (e) La série $\sum_{n\geq 1} R_{n,n}$ converge-t-elle?
- 3. On considère, dans cette question seulement, que, pour tout $n \in \mathbb{N}$, $u_n = \frac{(-1)^n}{n+1}$
 - (a) Montrer que la série $\sum_{n\geqslant 0} u_n$ converge.
 - (b) Montrer que

$$\lim_{n \to +\infty} \int_0^1 \frac{t^n}{1+t} \, \mathrm{d}t = 0$$

(c) Soit $N \in \mathbb{N}$, en remarquant que, pour tout $k \in \mathbb{N}$, $\frac{1}{k+1} = \int_0^1 t^k dt$, montrer que

$$\sum_{n=0}^{N} u_n = \int_0^1 \frac{1}{1+t} dt - \int_0^1 \frac{(-t)^{N+1}}{1+t} dt$$

(d) En déduire que, pour tout $n \ge 0$

$$R_{1,n} = \int_0^1 \frac{(-t)^{n+1}}{1+t} \, \mathrm{d}t$$

(e) Montrer par récurrence que, pour tout entier $p \ge 1$, la série $\sum_{n \ge 0} u_n$ converge à l'ordre p et que, pour tout $n \ge 0$

$$R_{p,n} = \int_0^1 \frac{(-t)^{n+p}}{(1+t)^p} \, \mathrm{d}t$$